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Section A 
Consider a component that would experience significant error in applying one of the 
analytical techniques in this course (A1) 
 

 

Consider a component in the cutaway relevant regarding shear buckling (A2) 
169: Leading edge rib structure 

Shear buckling would be relevant in the webs of the rib structure. The ribs primarily transfer forces 
from skin panels to the spars and stringers. They are generally under compression. The 
concentration of the forces at the various contact points on the rib could vary along its length and 
will be large at the point where the force is transferred to the stringers/spars. An uneven force at 
across these contact points would lead to shear stress in the rib’s web and consequently could 
create the conditions for shear buckling to occur. Most sides of the rib would have fixed boundary 
conditions as they connect to the wing panels or further supports, of note is the hole in the web 
panel. This would act to reduce the webs resistance to shear buckling as the boundary here would 
be a combination of simply supported and fixed. 

 

Figure 1:Rib Web structure and the subsequent shear buckling response. 
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Consider a component in the cutaway experiencing bending (A3) 
147: Outer wing panel rib and stringer structure 

Specifically, the stringers, they will carry the bending induced by the wings lift and/or gravity. These 
forces will induce a bending moment along the stringer.  

The stringers are relatively short and are connected to ribs periodically. It makes sense therefore to 
consider the stringers bending response as though it is broken into multiple stringers with lengths 
equal to the distance between the ribs. Given any stringer the loading in flight will act to create a 
bending moment that will induce compression at the top of the stringer and tension at the bottom. 

 Changing the cross section will affect the Ix, Iy and Ixy properties. As the stringers will experience 
the highest magnitude contribution to the bending moment in the Y direction the Ix cross sectional 
property will have the largest influence on the bending response or in other words increasing the 
distance between the X neutral axis and the area in the Y direction will reduce the bending stress 
response experienced by the stringer. 

Section B 
The Positive X direction is to the left and the positive Y direction is taken to be down. The coordinate 
systems origin is at Point 3 on the cross section. 

Calculating the centroid location and Ix, Iy, Ixy at the centroid (B1 a) 
Below are the values and intermediary results used during the calculation of the centroid 
coordinates and Second Moment of Inertia Properties. 

Table 1: Areas and Locations of points in the coordinate system. 

Point Area [mm^2] x* [mm] y* [mm] 

1 790 770 0 

2 310 220 0 

3 200 0 0 

4 790 770 170 

5 310 220 420 

6 200 0 420 

 

Table 2: Calculating Ax*, Ay*, and Second Moment of Area values for points assuming rectangular cross sections. 

Point Ax* Ay* Ix0 (Rect) Iy0 (Rect) 
1 608300 0 65.83 41086583.33 
2 68200 0 25.83 2482583.33 
3 0 0 16.67 666666.67 
4 608300 134300 65.83 41086583.33 
5 68200 130200 25.83 2482583.33 
6 0 84000 16.67 666666.67 

 

Table 3: Relevant totals for the above table. 

Total Area [mm^2] Total Ax* Total Ay* 

2600 1353000 348500 
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Table 4: Centroid Position. 

Centroid Point  Value [mm] 

x-bar 520.385 

y-bar 134.038 

 

Table 5: Cross Section Points based on Centroid Coordinate system. Ay^2 and Ax^2 Calculations. 

Point x [mm] y [mm] Ay^2 Ax^2 

1 249.615 -134.038 14193384.25 49223193.79 

2 -300.385 -134.038 5569555.84 27971584.32 

3 -520.385 -134.038 3593261.83 54160029.59 

4 249.615 35.962 1021653.48 49223193.79 

5 -300.385 285.962 25349940.46 27971584.32 

6 -520.385 285.962 16354800.30 54160029.59 

 

 

Table 6: Finding the cross sections total Ix, Iy and Ixy using the parallel axis theorem. 

Point Ix0 + Ay^2 Iy0 + Ax^2 Axy Ixy0 (Rect) Ixy0 + Axy 

1 14193450.08 90309777.12 -26431869.08 0 -26431869.08 

2 5569581.68 30454167.65 12481558.43 0 12481558.43 

3 3593278.50 54826696.25 13950310.65 0 13950310.65 

4 1021719.31 90309777.12 7091477.07 0 7091477.07 

5 25349966.29 30454167.65 -26628518.49 0 -26628518.49 

6 16354816.96 54826696.25 -29761997.04 0 -29761997.04 

 

 

Table 7: Summary of Required Values. Iy, Ix and Ixy are the totals of their respective columns. 

Properties Value Units 
x-bar 520.385 mm 
y-bar 134.038 mm 

Iy 351181282.1 mm^4 
Ix 66082812.82 mm^4 

Ixy -49299038.5 mm^4 
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Finding the direct stresses in each of stiffener and the minimum margin of safety in 
bending (B1 b) 
 

 

Figure 2: Diagram of the beam used to find Mx 

 

෍ 𝑀௣௢௜௡௧ ଵ =  0 =  −𝑀௫ − (32.5 ⋅ 1250) + (60 ⋅ 2500) + 10000 

𝑀௫ = 119375 𝑘𝑁 𝑚𝑚 

 

 

Figure 3: Diagram of the beam used to find My 

 

∑𝑀௣௢௜௡௧ ଵ =  0 =  −𝑀௬ + (20 ⋅ 1000) + (20 ⋅ 2000) 

𝑀௬ = 22020 𝑘𝑁 𝑚𝑚 

Both moments will induce tension in the positive quadrant and so both values are taken to be 
positive for the bending equation. 

𝜎௭ = ቆ
𝑀௬𝐼௫ − 𝑀௫𝐼௫௬

𝐼௫𝐼௬ − 𝐼௫௬
ଶ ቇ 𝑥 + ቆ

𝑀௫𝐼௬ − 𝑀௬𝐼௫௬

𝐼௫𝐼௬ − 𝐼௫௬
ଶ ቇ 𝑦 

𝜎௭ = ൬
22020 × 66082812.821 − 119375 × −49299038.462

351181282.051 × 66082812.821 + 49299038.462ଶ
൰ 𝑥 + ൬

119375 × 351181282.051 − 22020 ×  −49299038.462

351181282.051 × 66082812.821 + 49299038.462ଶ
൰ 𝑦 

𝜎௭ = 0.0003532915866𝑥 + 0.002070007763𝑦 
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Table 8: Direct Stress on each stiffener. Calculated from the above bending stress equation. Negative is compression. 
Positive is tension. σcy is 230 MPa and σty is 245 MPa 

Location X [mm] Y [mm] Stress-Z [MPa] Margin of Safety 

1 424.3461538 -190.769231 -244.9758626 -0.0611 
2 -125.653846 -190.769231 -439.2862352 -0.4764 
3 -345.653846 -190.769231 -517.0103843 -0.5551 
4 -345.653846 229.2307692 352.392876 0.6952 
5 -125.653846 229.2307692 430.1170251 0.5696 
6 424.3461538 -20.7692308 106.925457 2.2913 

 

Calculate the in-plane shear flow in each panel and the minimum margin of safety in 
shear (B1 c) 
 

Find shear force in the x and y directions. 

∑𝐹௫ =  0 = 𝑆௫ + 32.5 − 60 

𝑆௫ = 27.5 𝑘𝑁 

∑𝐹௬ = 0 = 𝑆௬ − 20 − 20 

𝑆௬ = 40 𝑘𝑁 

Use asymmetric shear stress equation. 

𝑞௡ =  − ቆ
𝑆௫𝐼௫ − 𝑆௬𝐼௫௬

𝐼௫𝐼௬ − 𝐼௫௬
ଶ ቇ 𝐴௡𝑥௡ − ቆ

𝑆௬𝐼௬ − 𝑆௫𝐼௫௬

𝐼௫𝐼௬ − 𝐼௫௬
ଶ ቇ 𝐴௡𝑦௡ 

𝑞௡ =  − ൬
27500 × 66082812.821 − 40000 × −49299038.462

351181282.051 × 66082812.821 + 49299038.462ଶ ൰ 𝐴௡𝑥௡ − ൬
40000 × 351181282.051 − 27500 × −49299038.462

351181282.051 × 66082812.821 + 49299038.462ଶ ൰ 𝐴௡𝑦௡ 

𝑞௡ =  −0.0001823796702 ⋅ 𝐴௡𝑥௡ − 0.0007413598224 ⋅ 𝐴௡𝑦௡ 

Table 9: Find q basic using the above asymmetric stress equation. Positive is CCW around the cross section. Panel 5-6 has 
been cut. 

Panel Qb [N/mm] An [mm^2] Xn [mm] Yn [mm] Q0 [N/mm] 

6-3 -23.419 200 -520.385 285.962 0.00 

3-2 15.437 200 -520.385 -134.038 -23.42 

2-1 63.225 310 -300.385 -134.038 15.44 

1-4 105.763 790 249.615 -134.038 63.23 

4-5 48.737 790 249.615 35.962 105.76 

 

Table 10: Finding the total enclosed area for the cross section. 

Shape Base [mm] Height [mm] AEn [mm^2] 

Horizontal Rect 770 170 130900 

Vertical Rect 220 250 55000 

Triangle 550 250 68750 

Total 
  

254650 
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Need to use torsional equivalence to find q closing 

Table 11: External Torsion about point 5. CCW is Positive. 

Property X [mm] Y [mm] Total 

Distance from Centroid to Point 5 300.385 285.962 
 

Ext Force 27500 40000 
 

Torque [N mm] 8260588 11438480 19699067.5 

 

Table 12: Internal Torsion contribution from q basic about point 5. Using ql * h. 

Panel qb [N/mm] Len [mm] Perp Distance (Point 5) Moment [N mm] 

6-3 -23.4185 420 220 -2163875.329 

3-2 15.4370 220 420 1426387.74 

2-1 63.2250 550 420 14604992.94 

1-4 105.7633 170 550 9888876.488 

4-5 48.7370 604.15 0 0 

Total 
   

23756381.84 

 

Find q closing from torsional equivalence. 

𝑇௘௫௧ =  𝑇௜௡௧ = ∑𝑞௕𝑙 ⋅ ℎ + 2𝑞௖𝐴௘ 

𝑞௖ =
𝑇௘௫௧ − 𝑇௤௕௔

2 ⋅ 𝐴௘
 

𝑞௖ =
19699067.5 −  23756381.84

2 ⋅ 254650
 

𝑞௖ =  −7.9665 𝑁/𝑚𝑚 

 

Table 13: Total shear flow in each panel. Negative is a CW flow about the cross section. Positive is CCW flow about the cross 
section. 

Panel qb + qc [N/mm] 

6-3 -31.38501682 

3-2 7.470644098 

2-1 55.258625 

1-4 97.79693225 

4-5 40.77061532 

5-6 -7.966452652 
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Calculate the bucking stress of the flexural and local modes in compression. Consider 
plasticity throughout. (B2 a) 
 

Finding minimum principal axis. 

𝐼௠௜௡, 𝐼௠௔௫ =
𝐼௫ + 𝐼௬

2
± ඨ൬

𝐼௫ + 𝐼௬

2
൰

ଶ

+ 𝐼௫௬
ଶ    

𝐼௠௜௡ =  57798763.700 mm4 

𝐼௠௔௫ =  359465331.172 mm4 

 

Consider elastic buckling using Euler elastic equation. 

Table 14: Properties of the beam relevant to buckling. 

Property Value Units 

L 5000 mm 

L' (2 x L, fixed free setup) 10000 mm 

Cross section area 2600 mm^2 

ρ (Radius of Gyration) (ඥ𝐼௠௜௡/𝐴) 149.098 mm 

Slenderness Ratio (L' / ρ) 67.070 
 

E (Youngs Modulus) 71000 MPa 

Yield Stress 230 MPa 

 

𝜎஼ோ =
𝜋ଶ𝐸

ቀ
𝐿ᇱ

𝜌 ቁ
ଶ 

𝜎஼ோ =
𝜋ଶ ⋅ 71000

ቀ
10000

149.098ቁ
ଶ 

𝜎஼ோ = 156 𝑀𝑃𝑎 

156 MPa is less than the yield stress 230 MPa so the column Is long and flexural buckling failure will 
occur in the elastic region. 

Considering local buckling. 

𝜎஼ோ ௅௢௖௔௟ = 𝐾𝐸 ൬
𝑡

𝑏
൰

ଶ
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Table 15: All a/b values indicate k∞ for boundary condition should be used. K∞ for Fixed-Fixed is 6.31. Critical Local 
Buckling Stress is calculated based on the given values. 

 
Panel 

t [mm] 
(Panel Thickness) 

b [mm] 
 (Panel Length) 

 
a/b 

Boundary 
Conditions 

K 
Value 

Buckling Stress 
[MPa] 

1 - 2 1.1719 550 9.091 Fixed-Fixed 6.31 2 

2 - 3 1.1719 220 22.727 Fixed-Fixed 6.31 13 

3 - 6 2.5 420 11.905 Fixed-Fixed 6.31 16 

6 - 5 1.1719 220 22.727 Fixed-Fixed 6.31 13 

5 - 4 1.1719 604.15 8.276 Fixed-Fixed 6.31 2 

4 - 1 2.5 170 29.412 Fixed-Fixed 6.31 97 

 

All critical local buckling stresses are bellow the Yield Stress of 230 MPa and so local buckling failure 
will occur in the elastic region. 

Panel 1-2 and 5-4 will fail in local buckling at 2 MPa and is less than the flexural failure stress of 156 
MPa. 

Therefore, the beam will fail locally in the elastic region at 2MPa or an applied in plane force of 5.2 
kN. 

Find the maximum axial force offset if the maximum allowable out-of-plane deflection 
is 10mm and the axial force is 1200 kN (B2 b) 
Table 16: Relevant values used to calculate eccentricity/axial force offset. 

Property Value Units 

P Crit 405.0202 kN 

P 1200 kN 

Allowable Deflection 10 mm 

L' 10000 mm 

Max y is at half L' 5000 mm 

 

𝛿 =  
4𝑒

𝜋

1

1 − ቀ
𝑃

𝑃௖௥
ቁ

  

𝑦(𝑧) = 𝛿 sin
𝜋𝑧

𝐿
 

Rearranging to solve for e 

𝑒 =
𝑦 ቀ1 −

𝑃
𝑃௖௥

ቁ 𝜋

4 sin
𝜋𝑧
𝐿

 

𝑒 =
10 ∗ ቀ1 −

1200
405.02ቁ 𝜋

4 sin 𝜋 ⋅
5000

10000

 

𝑒 (𝑎𝑥𝑖𝑎𝑙 𝑜𝑓𝑓𝑠𝑒𝑡) = 15.41 𝑚𝑚 
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Calculate and sketch the in-plane shear stress distribution (B3 a) 
 

Table 17: Properties relevant to shear stress and torsion analysis. 

Property Value Units 

Torsion 25000 kN mm 

AE 254650 mm^2 

G 27000 MPa 

L 5000 mm 

L/2 2500 mm 

 

Find q due to torsion. 

𝑞 =
𝑇

2𝐴௘
 

𝑞 =
25000

2 ⋅ 254650
 

𝑞 = 0.0491 𝑘𝑁/𝑚𝑚 

 

Table 18: Calculating s/t and the shear stress in each panel. 

Panel t (Panel Thickness) 
[mm] 

s (Panel Length) 
[mm] 

s/t Shear Stress  
(q x t x 1000) [N] 

1 - 2 1.1719 550 644.545 41.8866645 

2 - 3 1.1719 220 257.818 41.8866645 

3 - 6 2.5 420 1050 19.63479285 

6 - 5 1.1719 220 257.818 41.8866645 

5 - 4 1.1719 604.15 708.0034 41.8866645 

4 - 1 2.5 170 425 19.63479285 

 

 

Figure 4: Sketch of the stress distribution throughout the cross section. 
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Calculate the rate of twist (B3 b) 
 

Find J for a closed section. 

𝐽 =
4𝐴௘

ଶ

∑(
𝑠
𝑡)

 

𝐽 =
4 ⋅ 54650^2

(644.54) + (257.82) + (1050) + (257.82) + (708) + (19.63)
 

𝐽 = 77586653.96 𝑚𝑚ସ 

Find Rate of Twist. 

𝑑𝜃

𝑑𝑧
=

𝑇

𝐺𝐽
 

𝑑𝜃

𝑑𝑧
=

25000000

27000 ⋅ 77586653.96
 

𝑑𝜃

𝑑𝑧
= 1.1 × 10ିହ 𝑟𝑎𝑑/𝑚𝑚 

 

Does this beam undergo warping? Why/why not? (B3 c) 
 

Yes, the beam does undergo warping. We assume the beam is unrestrained which would indicate a 
consistent warping profile along the length of the beam and will allow for the use of elementary 
torsion theory for analysis.  

The warping is the result of the shear stress acting on a non-circular profile which is what is being 
considered in this assessment, the external torsion induces this shear stress which is constant along 
the beams length at any given cross section provided the beam is considered unrestrained. This 
shear stress acts to deform the cross section when acting on a non-circular section as it acts parallel 
to the edges creating a rotation and inducing the warping effect. 

If the beam were instead restrained the warping profile would vary along the length of the beam 
due to the added stress from the support acting to resist the torsion/shear stress. So, the warping 
profile would vary in comparison to the unrestrained situation, but warping would still occur. 

So, either way given a non-circular cross section the beam will undergo warping. 
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Calculate the torsion constant of the cross-section if the panel between stiffener 1 
and stiffener 2 is removed (B3 d) 
 
Section with out the 1-2 Panel will now be open instead of closed. Finding J for an open section. 

𝐽 = ෍
𝑠𝑡ଷ

3
 

 

Panel t (Panel Thickness) [mm] s (Panel Length) [mm] J [mm^4] 

2 - 3 1.1719 220 118.0247 

3 - 6 2.5 420 2187.5 

6 - 5 1.1719 220 118.0247 

5 - 4 1.1719 604.15 324.1121 

4 - 1 2.5 170 885.4167 

Total 
  

3633.08 

 

So, J (Torsion constant) for the new section is 3633.08 mm^4 


